To accelerate or decelerate in the light-emitting process of zinc-oxide crystals

A recent study has measured the internal quantum efficiency (IQE) of Zinc-Oxide (ZnO) crystals in both the light-emitting process and non-light-emitting process.

“Obtaining a quantitative breakdown of IQE from both processes allows us to better design semiconductors to improve IQE,” said professor Kazunobu Kojima, lead author of the study.

Highly efficient electronic and optical devices are essential for reducing energy consumption and for the realization of an eco-friendly society.

ZnO is an attractive material among direct-bandgap semiconductors. They possess light-emitting properties as well as toughness to sustain large electric field that enables them to power electronic devices because of their large bandgap energy and large exciton binding energy. This also makes them suitable in radiation-resistant thin-film-transistors and heterostructure field-effect-transistors.

In high-quality ZnO crystals, nonradiative recombination centers (NRCs) are important for the near-band-edge (NBE) emission. These centers act as undesired energy dissipation channels and reduce the IQE of the NBE emission.

To understand whether the light-emitting process or the non-light-emitting process was more important in determining the behavior of IQE, Kojima and his colleagues measured the IQE values of Zn0 crystal grown by the hydrothermal method. To do so, they employed a technique created by Kojima and fellow researchers known as omnidirectional photoluminescence (ODP) spectroscopy — a nondestructive method for probing semiconducting crystals with light to detect defects and impurities.

The IQE characteristics in ZnO crystals were examined under photo pumping conditions. IQE values indicated a constant behavior for weak photo pumping conditions and a monotonic increase for strong excitation. Because a significant decrease was observed for the non-light-emitting process with photo pumping, the origin of the IQE increase was revealed to be dominated by the deceleration of the non-light-emitting process due to the saturation of NRCs.

Story Source:

Materials provided by Tohoku University. Note: Content may be edited for style and length.

Leave a Reply